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Introduction 
Breast cancer is the most prevalent oncological condition in 

females and represents a significant medical problem.1 According to 
a 2022 estimate by the American Cancer Society, there were 287,850 
newly diagnosed cases of breast cancer with invasive properties. From 
1989 to 2019, the mortality rate from breast cancer was reported to be 
41% higher in black women compared to white women, presumably 
due to later diagnoses.2 It is widely accepted that about 10% of 
breast cancers are associated with mutations, such as alterations in 
BRCA1 and BRCA2.3 Breast cancer is typically categorized based 
on the expression of estrogen receptor (ER), progesterone receptor 
(PR), and human epidermal growth factor receptor 2 (HER2), with 
cells lacking all three—referred to as ‘triple-negative’- considered the 
most invasive.4

The treatment of early-stage breast cancer typically involves a 
combination of surgery,5 radiation therapy,6 and systemic therapy 
(such as chemotherapy, hormonal therapy, or targeted therapy).7 The 
specific treatment plan depends on various factors, including the size 
and location of the tumor, its spread to the lymph nodes, and the 
patient’s overall health condition and preferences. The most common 
surgical options are lumpectomy or mastectomy. Radiation therapy 
is often recommended after surgery to help eradicate any remaining 
cancer cells and reduce the risk of recurrence, using high-energy 

radiation to target the affected area of the breast. Systemic therapy 
may also be recommended for some patients with early breast cancer, 
particularly if the cancer is hormone receptor-positive or HER2-
positive.

As the disease progresses, the primary goal of treating advanced 
breast cancer shifts towards controlling the spread of the cancer, 
managing symptoms, and improving the patient’s quality of life.8 
Common treatments for advanced breast cancer include: systemic 
therapy- such as chemotherapy, hormone therapy, targeted therapy, and 
immunotherapy-designed to attack cancer cells throughout the body; 
surgery to remove or debulk the primary tumor or large metastases, 
or to alleviate symptoms such as pain or dyspnea; radiation therapy, 
which may be used to shrink tumors and relieve symptoms like pain, 
neurological symptoms, or dyspnea; and palliative care, focusing on 
providing support to patients and families by managing symptoms, 
maintaining quality of life, engaging in goals-of-care discussions, 
and addressing the emotional and psychological effects of the 
disease. Treatment for advanced breast cancer is typically focused on 
managing the disease rather than curing it, and thus may be ongoing 
and change over time depending on the cancer’s response to therapy.

Historically, cancer immunotherapy has focused on melanoma 
and renal cancers, with the possibility of immunotherapy for breast 
cancer being relatively understudied.9 Due to the higher incidences 
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Abstract

Despite significant advancements in therapeutic approaches to triple-negative breast 
cancer, treatments remain relatively ineffective once metastasis occurs. The introduction 
of immunotherapy has revolutionized oncological therapies, yet significant hurdles 
remain before its full potential can be realized. In this review, we examine immune escape 
mechanisms shared between pregnancy (the ‘fetal allograft’) and cancer. We discuss the 
use of abortion-inducing agents in the context of cancer immunotherapy, and we also 
provide rationale and preliminary data on FloraStilbene™, a combination of the polyphenol 
antioxidant pterostilbene and the glucocorticoid receptor antagonist mifepristone, for the 
stimulation of anticancer immunity.
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of immunologically mediated spontaneous remissions in these two 
cancers, they have traditionally been viewed as ‘immunogenic’.10–15 
This review will discuss more recent findings suggesting that immune 
responses in breast cancer may exist and can be therapeutically 
leveraged.16

The immune system fights breast cancer
Immunotherapy offers the ability to specifically target and kill 

tumor cells without some of the toxicity associated with traditional 
oncological therapies such as radiation and chemotherapy. Despite 
initial controversies regarding the natural role of the immune 
system in controlling cancer development, a theory known as 
‘immunosurveillance’,17 it is now widely accepted that the immune 
system not only keeps cancer at bay but also that that proper immune 
stimulation can be used as a therapy for cancer.18 Initial clinical 
approvals of immunotherapy began with immunogenic tumors such 
as melanoma and kidney cancer.19 but it eventually expanded to other 
cancers, including breast cancer.20

This expansion is underscored by the recognition of tumor 
immunogenicity, which is determined partly by whether immune cells 
infiltrate the cancer and whether this correlates with a better or worse 
prognosis. Melanoma, for instance, was identified as immunogenic 
through studies demonstrating that ‘tumor-infiltrating lymphocytes’ 
(TILs) were associated with enhanced survival.21 The active role of 
TILs in suppressing the tumor was demonstrated in reports where 
TILs were extracted from patients, expanded outside the body—free 
from the tumor’s immunosuppressive pressures—and then re-infused 
into the same patients.22 In three consecutive clinical trials using TILs, 
objective response rates between 49% and 72% were observed in 
advanced melanoma.23 Furthermore, it was shown that the re-infused 
cells homed back to the tumor,24,25 leading to the discovery of the first 
tumor-specific antigens, the melanoma-associated antigen (MAGE) 
family.26

Similarly, in breast cancer, numerous studies have demonstrated a 
correlation between TILs and improved survival. Ren et al. examined 
68 patients with triple-negative breast cancer and found a strong 
correlation between tumor infiltration by T cells, specifically CD3 and 
CD8, and longer progression-free survival.27 Similar findings have 
been reported by other independent researchers.28,29 An increased 
number of TILs is associated with a better response to therapy.30 It is 
believed that TILs control the tumor through direct killing, primarily 
by CD8 cytotoxic lymphocytes,31 as well as by suppressing tumor 
growth and angiogenesis, mediated by the production of cytokines 
such as interferon-gamma.32 The secretion of perforin and granzyme 
B by CD8 T cells, known mechanisms of cellular destruction, 
logically correlates with improved survival, a finding that has indeed 
been demonstrated.33

Building on the role of specific immune cells, T cells are known 
to eradicate cancer by recognizing molecular signatures on tumors 
known as “tumor-associated antigens.” Cancerous cells, to gain an 
advantage over normal cells, often start producing new proteins that 
are not typically found in the adult body, usually mutated versions 
of existing proteins. When cancer begins producing these proteins, T 
cells recognize and attempt to eliminate the tumor.

T cells are considered part of the adaptive immune system, 
because of their ability to create immunological memory. Innate 
immune system cells, such as natural killer (NK) cells, are another 
mechanism of protection from neoplasia. Unlike T cells, which 
recognize peptides presented on HLA molecules, NK cells eliminate 
cells that lack HLA molecules. HLA molecules serve as a ‘negative 

signal’ that prevents NK cell activation; a mechanism central to the 
‘missing self’ hypothesis.34 Originally thought of as the immune 
system’s ‘backup’ when cancer cells down regulate HLA to evade T 
cell-mediated killing, NK cells also target cells expressing proteins 
indicative of ‘cellular stress.’ Given that cancer cells produce proteins 
at a much faster rate than normal cells, they express these ‘danger 
proteins,’ which activate NK cells.35 Studies have demonstrated that 
breast cancer patients with higher levels of NK cell activity tend to 
live longer than those with lower levels.36

Breast cancer fights the immune system
If the body has such potent means of protecting itself against 

cancer, why do tumors arise and progress? One of the main reasons 
is that cancer effectively leverages components of the immune system 
that down regulate immunity after immune recognition. One such 
immune regulatory mechanism involves T regulatory (Treg) cells. 
These cells have been demonstrated to protect the body against 
autoimmunity,37 transplant rejection,38 and immunologically mediated 
miscarriages.39 Importantly, this mechanism is co-opted by cancer 
cells to escape immune destruction.

One example of this is a study by Bates et al. who assessed the 
numbers of Treg cells (identified by FOXP3 expression) in tissue 
microarray cores from pure ductal carcinoma in situ (DCIS), invasive 
breast cancer, or from comparable areas of normal terminal duct 
lobular breast tissue. Treg cell numbers were significantly higher in 
samples from in situ and invasive breast carcinomas than in normal 
breast tissue. Importantly, high numbers of FOXP3-positive Treg cells 
identified patients with DCIS at increased risk of relapse and patients 
with invasive tumors with both shorter relapse-free and overall 
survival. Another important finding in the same study was that high 
numbers of FOXP3-positive Treg cells can identify patients at risk 
of relapse after 5 years.40 The correlation between Treg numbers and 
poor prognosis has been reported by other studies.41–43 Interestingly, 
some drugs used in breast cancer, such as estrogen blockers, may 
reduce Treg numbers.44

Besides being associated with poor prognosis Tregs also play a 
role in response to therapy. In a clinical study, 93 patients with breast 
cancer diagnosed by core-needle biopsy (CNB) and treated with 
primary systemic chemotherapy (PSC) were examined. CNB and 
surgically resected specimens were stained with a FOXP3 mouse 
monoclonal antibody to compare the numbers of FOXP3- positive 
cells in the tumors before and after PSC. A median cut-off value of 
>16.3/high power field (HPF) and >6.6/HPF defined high numbers of 
Tregs in CNB and in surgical specimens, respectively. The patients 
were assigned into four groups (HH, high number of FOXP3-positive 
cells in both CNB and surgical specimen; LL, low number in both 
specimens; HL, high in CNB and low in the surgical specimen; LH, 
low in CNB and high in surgical specimen). Lymph vessel invasion-
positive, clinically non-responder and ER-negative tumors contained 
significantly more FOXP3- positive cells after PSC. Prognosis was 
better among patients with low numbers than high numbers of FOXP3-
positive cells both in CNB and in surgically resected specimens. In 
multivariate analysis, the LL group demonstrated significantly better 
recurrence-free survival than the non-LL group (LH, HL, and HH). 
These findings suggest that the number of FOXP3-positive cells 
identified during PSC represents a promising predictive factor that 
might also be an important therapeutic target for breast cancer.42

In another study, it was shown that pathologic complete responses 
(pCR) to chemotherapy in breast cancer patients were associated 
with decreases of intratumor Tregs. High CD8 infiltration and no 
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Foxp3 infiltration on final histologic specimens were independently 
associated with pCR. This study suggests that Treg cells may be 
suppressing the activity of effector cells that otherwise could be 
capable of killing the tumor.45

Cancer suppressing effects of RU-486 
In the search novel immune stimulators researchers have 

exampled biological situations that may resemble the growth and 
progression of neoplasia. Correlations between cancer and pregnancy 
have previously been made based on shared characteristics such as 
angiogenesis, cellular trafficking, and immune modulation.46 The 
process of immunologically mediated miscarriage is associated with 
similar types of immune responses as those seen in tumors regressing 
from immunotherapy, specifically, activation and infiltration of NK 
cells,47–51 macrophages,52–54 and CD8 cytotoxic T cells.55 Given these 
similarities, the authors questioned whether agents that terminate 
pregnancy might also have effects against cancer. Abortogenic agents 
have been shown to possess anticancer properties; these include agents 
that suppress indoleamine 2,3-dioxygenase,56–61 myeloid-derived 
suppressor cells,62–67 and Treg,68–71 as well as checkpoint inhibitors.72 
Furthermore, cancer and pregnancy share numerous means of 
immune evasion, including over-expression of Fas ligand,73–76 hCG,77–

83 HLA-G,84 PD-L1,85–93 TIM-3,72,94,95 arginase,96–99 and VISTA.100–102

RU-486, now known as mifepristone, was originally synthesized 
by Georges Teutsch based on experiments aimed at developing 
artificial steroids. The name originates from the name of the company 
that developed it, Roussel-Uclaf (RU), and it was compound number 
38486, shortened from RU-38486 to RU-486. This compound was 
first noted for its potent binding to the glucocorticoid receptor and 
for blocking glucocorticoid biological activities in tissue culture. 
Subsequently, it was found to block progesterone receptor activity 
only in the presence of progesterone. This finding led to studies on 
its abortifacient effects, which are associated with erosion of the 
endometrium, detachment of the chorion from the decidua basalis, 
atrophy of the corpus luteum, enhanced uterine contractibility, cervical 
softening and dilatation, and eventual expulsion of the embryo and 
endometrium.103 Although the abortifacient effects have been ascribed 
to progesterone receptor antagonism, there is increasing evidence that 
immunological mechanisms such as suppression of Treg cell activity 
play a significant role in its action.104 Given the fundamental role of 
Treg cell activity in cancer’s escape from the immune response, if 
RU486 can reduce the number or activity of these cells, it may have a 
potential role as a cancer therapeutic.

One suggestion that RU-486 may induce abortion in part 
through immune modulation came from Mao et al., who showed 
that progesterone increases the numbers of Treg cells as well as 
augmenting their immune suppressive activity. Blocking progesterone 
signaling with RU-486 resulted in a loss of Treg number and activity, 
which correlated with immunological cell infiltration, inflammatory 
cytokine secretion, and eventual fetal loss.105 A direct cause-and-
effect relationship between Treg loss and fetal death was illustrated 
in a publication in which RU-486 was administered to pregnant mice, 
resulting in impaired Treg functional competence, increased cytotoxic 
CD8 T cells, and fetal loss. Importantly, adoptive transfer of Treg 
cells- but not conventional T cells- alleviated fetal loss.104 Essentially, 
this shows that depletion of Treg cells is a mechanism of action, as the 
transfer of healthy Treg cells prevented abortion.

Besides inducing immunity by reducing Treg cells, RU-486 also 
augments the maturation of dendritic cells. These cells, classically 
known as ‘professional antigen-presenting cells’ for their unique 

ability to activate naïve T cells,106 promote the generation of Treg cells 
and a healthy pregnancy when in an immature state.107,108 Conversely, 
when dendritic cells are mature, they no longer induce the generation 
of Treg cells but instead lead to immune activation.109 Just as Treg cells 
allow for cancers to escape immune killing, immature dendritic cells 
have been shown to provide means of tumor immune evasion through 
the induction of energy in tumor-reactive T cells or conversion to Treg 
cells.110,111

Yinghua et al., conducted a series of experiments to assess the ability 
of RU-486 to alter immunity by DC manipulation.112 They showed 
that the drug promoted the expression of the DC maturation markers 
CD80, CD86, and ICAM-1 while decreasing the cancer-associated 
immune suppressive molecules indoleamine 2,3-dioxygenase113–115 
and TGF-beta.116 Importantly, when Tregs were cultured with RU486-
cultured DC, the Tregs lost suppressive activity. These experiments 
suggest that RU486 possesses a direct maturation-inducing effect on 
DC, which blocks Treg generation through modulating the upstream 
cytokine TGF-beta.

It appears that some parallels may exist between the process of RU-
486 induction of immunological reactions against the ‘fetal allograft’ 
and immune-mediated tumor rejection. If this is the case, then it is 
important to provide an overview of existing work evaluating this 
abortogen in the context of oncology.

Immune stimulatory effects of RU-486
The mechanisms of cancer immunity induced by RU-486 could 

involve the reduction of Tregs, which is associated with immune 
suppression in numerous cancers, inhibition of glucocorticoid 
signaling, and suppression of transforming growth factor beta (TGF-
beta) activity. In one series of experiments, BALB/c-green fluorescent 
protein (GFP)+ bone marrow (BM) cells were transplanted into 
immune deficient NSG mice to generate an immune competent NSG/
BM-GFP+ (NSG-R) mouse model. Treatment with RU-486 inhibited 
the growth of 59-2-HI tumors and caused alterations in the tumor 
microenvironment similar to those observed in fetal loss. Tumors in 
RU-486-treated immune competent mice showed increased infiltration 
of F4/80+ macrophages, natural killer, and CD8 T cells, displaying 
a central memory phenotype. Mechanistically, RU-486 induced 
immunogenic cell death both in vitro and in vivo, as depicted by the 
expression and subcellular localization of the alarmins calreticulin 
and HMGB-1, and the induction of a gene program characteristic 
of immunogenic cell death. Moreover, RU-486-treated tumor cells 
efficiently activated immature DC, evidenced by enhanced expression 
of MHC-II and CD86, and induced a memory T-cell response, 
attenuating tumor onset and growth after re-challenge. Of relevance to 
current clinical oncology, RU-486 treatment increased the sensitivity 
of tumors to inhibition of the PD-L1 checkpoint.117

To demonstrate that RU-486 induces anticancer immunity through 
immune stimulation and not necessarily progesterone inhibition, a 
series of experiments were conducted using several human prostate 
cancer cell lines in murine immune deficient and immune competent 
hosts. The experiments assessed effects of RU-486 alone or in 
combination with IL-12 adenoviral gene therapy. Treatment of human 
PC3 prostate xenograft (androgen independent) or TRAMP-C1 
tumors (androgen receptor positive) with the combination Ad5IL-12 
vector and RU-486 produced significantly better therapeutic efficacy 
compared to controls. Additionally, combination therapy increased 
the capacity of tumor sentinel lymph node lymphocytes to produce 
Granzyme B in response to tumor cell targets. Finally, combination 
therapy tended towards a decrease in CD4+/FoxP3+ T regulatory cell 
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populations in the draining lymph nodes. These experiments provide 
in vivo support for the hypothesis that RU-486 directly acts as an 
immune stimulator.118

In addition to its immune modulating anticancer effects, RU-486 
has been reported to directly suppress neoplasia in several animal 
models. For example, in one study, sixty-one mice developing 
spontaneous leukemia were treated with RU-486 and 33 controls 
with olive oil. Quality of life was determined by body conditioning 
score (BCS). Treatment was initiated when the mice were 6 months 
old. Within 2 weeks of therapy, 11.4% of the RU-486 treated mice 
died compared to a 50% mortality in the control group. The BCS 
was 5 (highest quality) in 82% of treated mice vs. 11% of controls 
after 2 weeks of therapy.119 Similar therapeutic responses were seen 
in a lung cancer model where mice received RU-486 at 0.3 mg three 
times weekly from 8 weeks compared to olive oil in the controls. The 
survival at one year for mice treated with mifepristone was 57.6% vs. 
26.6% for controls.120

Use of RU-486 in cancer patients
Clinical signals exist suggesting the potential utility of RU-486 

in oncology. In one report, RU-486 was administered at 200 mg 
per day orally to two patients with stage IV colon cancer suffering 
from extensive metastases. This regimen was well-tolerated, and 
both patients not only survived far longer than expected but also 
experienced marked improvements in quality of life and increased 
energy upon initiating RU-486. Though the metastatic lesions did 
not disappear, no new ones appeared for a substantial time, and the 
existing ones did not grow.121

In contrast to many therapeutic interventions, RU-486 appears 
not to be limited by the blood-brain barrier. A 43-year-old male with 
end-stage stage IV glioblastoma multiforme was treated exclusively 
with RU-486 at 200 mg orally daily. The patient exhibited definite 
palliative effects for several weeks and lived significantly longer than 
predicted before treatment.122

Additionally, two case reports describe the administration of 
mifepristone monotherapy daily at 200 mg to a moribund woman with 
never-treated metastatic lung cancer and a male with bilateral renal cell 
carcinoma who had undergone only a unilateral hemi nephrectomy. 
Both patients experienced long-term high-quality survival- 5 years 
for the patient with lung cancer, with complete remission of all lung 
lesions, and 12 years for the male patient with kidney cancer. Neither 
patient reported any treatment-associated adverse effects.123

Interestingly, RU-486 may also show activity in patients where 
other treatments have failed. A 68-year-old woman suffering from 
metastatic non-small cell lung cancer progressed despite treatment 
with a checkpoint inhibitor (nivolumab) and three rounds of multi-
agent chemotherapy. After 1.5 years of treatment with single-agent 
mifepristone, her cancer remained stable, with some tumor regression 
reported.124 Similar therapeutic outcomes were published for cases of 
pancreatic cancer,125 leukemia, and osteosarcoma.126

The therapeutic potential of RU-486 has not been restricted to 
solid tumors alone. In one report, an 81-year-old woman with chronic 
lymphocytic leukemia, which had progressed to an acute rapidly 
progressing stage, was treated with only 200 mg of mifepristone daily. 
The patient showed dramatic improvement upon initiation of therapy 
and maintained remission until the time of publication, which was 12 
months.127

Optimizing anticancer efficacy of RU486: 
formulating with Pterostilbene

Res Nova Biologics Inc has screened various compounds for 
augmentation of RU-486’s immune modulatory efficacy. The naturally 
derived compound pterostilbene was identified as possessing the 
strongest ability to enhance multiple cancer inhibitory biological 
activities of RU-486. This compound is a naturally derived analogue 
of resveratrol128 and has been shown to possess therapeutic activity in 
a wide variety of conditions, including diabetes, aging, depression, 
and brain injury.129

Mechanistically, pterostilbene exhibits several interesting 
biological functions, including activation of NRF2, which mediates 
numerous anti-apoptotic activities,130,131 suppression of NF-kappa,132 
and inhibition of p38 MAP kinase,133 both potent mediators of 
inflammation. Interestingly, the effects of pterostilbene on cancer can 
be considered paradoxical; it appears to have anti-apoptotic effects in 
non-malignant cells,134 while inducing death in transformed cells both 
in vitro135,136 and in vivo.137

In the context of immunotherapy, pterostilbene possesses 
numerous interesting properties. According to United States Patent 
#9682047B2, administration of pterostilbene was capable of 
enhancing the therapeutic effects of interleukin-2 in a murine model of 
melanoma. The immune stimulatory activities of pterostilbene appear 
to function through the suppression of feedback inhibition loops. For 
example, immune activation using agents such as interleukin-2 or toll-
like receptor activators stimulates the immune suppressive enzyme 
cyclo-oxygenase 2 (COX-2),138,139 which produces prostaglandin 
E2, a known promoter of Treg cell generation dependent on COX-2 
activity.140

Another mechanism by which pterostilbene stimulates antitumor 
immunity is by down regulating oxidative stress and neutrophil 
activity, which are associated with numerous tumors and the 
suppression of T cell immunity through cleavage of the TCR-
zeta chain.141 Pterostilbene has been shown to suppress neutrophil 
activation in various systems, including a melanoma model of 
metastasis,142 a cardiac ischemic reperfusion model,143 and an arthritis 
model.144 Mechanistically, pterostilbene induces accelerated apoptosis 
of activated neutrophils through a caspase-3 dependent mechanism 
and suppresses the production of oxidative radicals at a pre-apoptotic 
stage.145

Additionally, augmentation of tumor sensitivity to NK cell-
mediated killing by pterostilbene has been reported. Yulin et al reported 
that pterostilbene treatment enhanced the expression of NK group 2 
member D (NKG2D) ligands- major histocompatibility complex 
class I chain-related proteins A and B (MICA/B) on prostate cancer 
cells. These molecules are typically seen as activators of NK natural 
cytotoxicity towards cancer cells. The authors found that inhibition 
of miR-20a by pterostilbene was occurring, which normally silences 
expression of the 3’ untranslated region (UTR) of MICA/B. Blocking 
expression of miR-20a by pterostilbene results in up regulation of 
MICA/B, making prostate cancer cells significantly more sensitive to 
NK-mediated killing.146 Given that RU-486 enhances NK activity, a 
potent synergy is anticipated between these two agents. Accordingly, 
we initiated a series of experiments to assess this hypothesis.

FloraStilbene preclinical data
In order to assess whether FloraStilbene possesses ability to 

suppress tumor growth, the classical triple negative 4T1 model 
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was utilized. 4T1 cells were grown in RPMI 1640 media in a fully 
humidified atmosphere with 5% carbon dioxide. 4T1 triple-negative 
murine breast cancer cells were administered to female BALB/c mice 
at a concentration of 500,000 cells per mouse in the mammary pad. 
Mice were treated with either a) saline; b) pterostilbene at 2 mg/kg; 
c) RU-486 at 3 mg/kg; or d) a combination of pterostilbene and RU-
486. Each treatment group consisted of 10 mice. As shown in Figure 
1 below, significant synergy was observed in the regression of this 
model of breast cancer. 

Figure 1 Suppression of 4T1 growth by FloraStilbene.

FloraStilbene™ increases NK cell activity. Tumor-bearing mice 
treated as described above were sacrificed at the indicated times, and 
NK activity was assessed using the MTT cytotoxicity assay against 
labeled 4T1 cells. It is known that MTT readings correspond to the 
number of cells present in the exponential growth phase. To utilize 
the MTT assay, MTT liquid was made at (10µl MTT solution in each 
100µl media) added to each well and the plates were then incubated 
at 37°C for 5 hours. Subsequently, the remaining MTT solution was 
discarded DMSO was added to each well to dissolve the formazan 
crystals. The plates were shaken for 5 minutes on a plate shaker to 
ensure adequate solubility. Absorbance readings of each well was 
performed at 540 nm (single wavelength) using a multi scan plate 
reader.

NK cells were extracted from spleens using Magnetic Activated 
Cell Sorting (MACS) by Miltenyi Biotec, according to the 
manufacturer’s instructions. NK cells were plated at a 10 to 1 ratio. As 
seen in Figure 2 below, an increase in NK cell activity was observed 
with FloraStilbene™ treatment.

Figure 2 FloraStilbene increases NK activity.

In order to mechanistically assess the immuno modulatory activity 
of FloraStilbene, the expression of the TCR zeta chain was assessed. 
Erythrocyte depleted samples were examined by flow cytometry using 
intracellular cytokine staining. Briefly, 2 mm monensin was added 

to T cells for 4 h. Cells were fixed with 2% PFA and permeabilized 
with FACS buffer (PBS supplemented with 5% FBS and 0.1% 
sodium azide) containing 0.1% saponin. An anti-TCR zeta chain 
antibody, was used for indirect staining prior to a secondary goat 
antimouse R-phycoerythrin-conjugated antibody. Protection from 
loss of TCR-zeta was observed, suggesting a possible mechanism of 
immune-preservation/immune stimulation by FloraStilbene figure 3.

Figure 3 FloraStilbene protects TCR zeta.

Conclusion 

Clinical uses of FloraStilbene

Stimulation of immunity to cancer is major unrealized goal. 
Preliminary data presented supports the possible use of combinations 
of pterostilbene and RU486. These studies have limitations, however 
early clinical responses have been observed which will be the subject 
of future publications. 

We believe that increasing the activity of NK cells could enhance 
the efficacy of drugs already on the market for the treatment of breast 
cancer. For example, trastuzumab (Herceptin) represents a significant 
therapeutic modality whose efficacy is influenced by NK activity. 
In one study, immunological responses were assessed in 26 patients 
receiving trastuzumab monotherapy as maintenance management 
after chemotherapy (8 mg/kg load and then standard doses of 6 mg/kg 
every 3 weeks). Cytotoxic activity against the MHC class I-negative 
standard NK target K562 cell line and HER2-specific ADCC against 
a trastuzumab-coated HER2-positive SKBR3 cell line were assessed 
in peripheral blood mononuclear cells (PBMC) harvested after the 
first standard dose. After six months, seventeen patients were scored 
as responders and nine as non-responders according to the RECIST 
criteria, while progression-free survival (PFS) was calculated 
during a 12-month follow-up. It was shown that the responders had 
significantly higher levels of both NK and ADCC activities that were 
not different from those of eleven normal controls. The NK activity 
of the non-responders was significantly lower than that of the normal 
controls. At twelve months, there was a marked correlation between 
PFS and NK activity only. PFS was significantly longer in patients 
with high levels of NK activity, whereas its pattern was unrelated to 
high or low ADCC activity.147

Based on the direct and indirect cancer inhibiting properties of 
RU486 and pterostilbene, as well as our pilot data, we conclude that 
the FloraStilbene product being developed by Res Nova Biologics 
possesses promising potential as a monotherapy or as an adjuvant to 
existing immunotherapies. 
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